
goless Documentation
Release 0.6.0

Rob Galanakis

July 11, 2014

Contents

1 Intro 3

2 Goroutines 5

3 Channels 7

4 The select function 9

5 Exception Handling 11

6 Examples 13

7 Benchmarks 15

8 Backends 17

9 Compatibility Details 19
9.1 PyPy . 19
9.2 Python 2 (CPython) . 19
9.3 Python 3 (CPython) . 19
9.4 Stackless Python . 20

10 goless and the GIL 21

11 References 23

12 Contributing 25

13 Miscellany 27

14 Indices and tables 29

i

ii

goless Documentation, Release 0.6.0

• Intro

• Goroutines

• Channels

• The select function

• Exception Handling

• Examples

• Benchmarks

• Backends

• Compatibility Details

• goless and the GIL

• References

• Contributing

• Miscellany

• Indices and tables

Contents 1

goless Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Intro

The goless library provides Go programming language semantics built on top of gevent, PyPy, or Stackless Python.

For an example of what goless can do, here is the Go program at https://gobyexample.com/select reimplemented with
goless:

c1 = goless.chan()
c2 = goless.chan()

def func1():
time.sleep(1)
c1.send(’one’)

goless.go(func1)

def func2():
time.sleep(2)
c2.send(’two’)

goless.go(func2)

for i in range(2):
case, val = goless.select([goless.rcase(c1), goless.rcase(c2)])
print(val)

It is surely a testament to Go’s style that it isn’t much less Python code than Go code, but I quite like this. Don’t you?

3

https://github.com/rgalanakis/goless
http://www.gevent.org/
http://pypy.org/
http://www.stackless.com/
https://gobyexample.com/select

goless Documentation, Release 0.6.0

4 Chapter 1. Intro

CHAPTER 2

Goroutines

The goless.go() function mimics Go’s goroutines by, unsurprisingly, running the routine in a tasklet/greenlet. If
an unhandled exception occurs in a goroutine, goless.on_panic() is called.

goless.go(func, *args, **kwargs)
Run a function in a new tasklet, like a goroutine. If the goroutine raises an unhandled exception (panics), the
goless.on_panic() will be called, which by default logs the error and exits the process.

Parameters

• args – Positional arguments to func.

• kwargs – Keyword arguments to func.

goless.on_panic(etype, value, tb)
Called when there is an unhandled error in a goroutine. By default, logs and exits the process.

5

goless Documentation, Release 0.6.0

6 Chapter 2. Goroutines

CHAPTER 3

Channels

There are three types of channels available in goless. Use the goless.chan() function to create a channel. The
channel implementations contain more thorough documentation about how they actually work.

goless.chan(size=0)
Returns a bidirectional channel.

A 0 or None size indicates a blocking channel (the send method will block until a receiver is available, and the
recv method will block until a sender is available).

A positive integer value will return a channel with a buffer. Once the buffer is filled, the send method will
block. When the buffer is empty, the recv method will block.

A negative integer will return a channel that will never block when the send method is called. The recv
method will block if the buffer is empty.

Return type goless.channels.GoChannel

class goless.channels.GoChannel
A Go-like channel that can be sent to, received from, and closed. Callers should never create this directly.
Always use goless.chan() to create channels.

close()
Closes the channel, not allowing further communication. Any blocking senders or receivers will be
woken up and raise goless.ChannelClosed. Receiving or sending to a closed channel will raise
goless.ChannelClosed.

recv()
Receive a value from the channel. Receiving will always block if no value is available. If the channel
is already closed, goless.ChannelClosed will be raised. If the channel closes during a blocking
recv, goless.ChannelClosed will be raised. (#TODO)

send(value=None)
Sends the value. Blocking behavior depends on the channel type. Unbufferred channels block if no receiver
is waiting. Buffered channels block if the buffer is full. Asynchronous channels never block on send.

If the channel is already closed, goless.ChannelClosed will be raised. If the channel closes during
a blocking send, goless.ChannelClosed will be raised. (#TODO)

class goless.ChannelClosed
Exception raised to indicate a channel is closing or has closed.

7

goless Documentation, Release 0.6.0

8 Chapter 3. Channels

CHAPTER 4

The select function

Go’s select statement is implemented through the goless.select() function. Because Python lacks anony-
mous blocks (multiline lambdas), goless.select() works like Go’s reflect.Select function. Callers should create
any number of goless.case classes that are passed into goless.select(). The function returns the chosen
case, which the caller will usually switch off of. For example:

chan = goless.chan()
cases = [goless.rcase(chan), goless.scase(chan, 1), goless.dcase()]
chosen, value = goless.select(cases)
if chosen is cases[0]:

print(’Received %s’ % value)
elif chosen is cases[1]:

assert value is None
print(’Sent.’)

else:
assert chosen is cases[2]
print(’Default...’)

Callers should never have to do anything with cases, other than create and switch off of them.

goless.select(*cases)
Select the first case that becomes ready. If a default case (goless.dcase) is present, return that if no other
cases are ready. If there is no default case and no case is ready, block until one becomes ready.

See Go’s reflect.Select method for an analog (http://golang.org/pkg/reflect/#Select).

Parameters cases – List of case instances, such as goless.rcase, goless.scase, or
goless.dcase.

Returns (chosen case, received value). If the chosen case is not an goless.rcase,
it will be None.

class goless.dcase
The default case.

class goless.rcase(chan)
A case that will chan.recv() when the channel is able to receive.

class goless.scase(chan, value)
A case that will chan.send(value) when the channel is able to send.

9

http://golang.org/pkg/reflect/#Select
http://golang.org/pkg/reflect/#Select

goless Documentation, Release 0.6.0

10 Chapter 4. The select function

CHAPTER 5

Exception Handling

Exception handling is a tricky topic and may change in the future. The default behavior right now is that an unhandled
exception in a goroutine will log the exception and take down the entire process. This in theory emulates Go’s panic
behavior: if a goroutine panics, the process will exit.

If you are not happy with this behavior, you should patch goless.on_panic to provide custom behavior.

If you find a better pattern, create an issue on GitHub.

11

goless Documentation, Release 0.6.0

12 Chapter 5. Exception Handling

CHAPTER 6

Examples

The examples/ folder contains a number of examples.

In addtion, there are many examples from http://gobyexample.com implemented via goless in the
tests/test_examples.py file.

If there is an example you’d like to see, or an idiomatic Go example you’d like converted, please see Contributing
below.

13

http://gobyexample.com

goless Documentation, Release 0.6.0

14 Chapter 6. Examples

CHAPTER 7

Benchmarks

You can run benchmarks using the current Python interpreter and configured backend by running the following from
the goless project directory:

$ python -m benchmark

Developers may run benchmarks locally and report them into the following table. The Go versions of the benchmarks
are also run. The numbers are useful for relative comparisons only:

Table 7.1: Current goless Benchmarks

Platform Backend Benchmark Time
go gc chan_async 0.00236
PyPy2 stackless chan_async 0.03200
CPython2 stackless chan_async 0.09000
PyPy2 gevent chan_async 0.39600
CPython3 gevent chan_async 0.91000
CPython2 gevent chan_async 1.05000

go gc chan_buff 0.00235
PyPy2 stackless chan_buff 0.03200
CPython2 stackless chan_buff 0.10000
PyPy2 gevent chan_buff 0.39600
CPython3 gevent chan_buff 0.97000
CPython2 gevent chan_buff 1.11000

go gc chan_sync 0.00507
PyPy2 stackless chan_sync 0.05200
CPython2 stackless chan_sync 0.10000
PyPy2 gevent chan_sync 0.80000
CPython3 gevent chan_sync 0.89000
CPython2 gevent chan_sync 1.07000

go gc select 0.03031
PyPy2 stackless select 0.06400
CPython2 stackless select 0.28000
PyPy2 gevent select 0.49200
CPython3 gevent select 1.38000
CPython2 gevent select 1.49000

Continued on next page

15

goless Documentation, Release 0.6.0

Table 7.1 – continued from previous page
Platform Backend Benchmark Time
PyPy2 gevent select_default 0.00800
PyPy2 stackless select_default 0.00800
go gc select_default 0.02645
CPython2 stackless select_default 0.14000
CPython3 gevent select_default 0.15000
CPython2 gevent select_default 0.20000

To regenerate this table, run:

$ python write_benchmarks.py

To print the table to stdout, run (notice the trailing - char):

$ python write_benchresults.py -

Assuming you have Go installed, you can run the benchmarks with:

$ go run benchmark.go

16 Chapter 7. Benchmarks

CHAPTER 8

Backends

There are two backends for concurrently available in goless.backends. Backends should only be used by
goless, and not by any client code. You can choose between backends by setting the environment variable
GOLESS_BACKEND to "gevent" or "stackless". Otherwise, an appropriate backend will be chosen. If neither
gevent or stackless are available, goless will raise an error when used (but will still be importable).

17

goless Documentation, Release 0.6.0

18 Chapter 8. Backends

CHAPTER 9

Compatibility Details

The good news is that you probably don’t need to worry about any of this, and goless works almost everywhere.

The bad news is, almost all abstractions are leaky, and there can be some nuances to compatibility. If you run into an
issue where goless cannot create a backend, you may need to read the following sections.

9.1 PyPy

goless works under PyPy out of the box with the stackless backend, because PyPy includes a stackless.py file
in its standard library. This appears to work properly, but fails the goless test suite. We are not sure why yet, as
stackless.py does not have a real maintainer and the bug is difficult to track down. However, the examples and
common usages seem to all work fine.

Using PyPy 2.2+ and the tip of gevent’s GitHub repo (https://github.com/surfly/gevent), the gevent backend works
and is fully tested.

9.2 Python 2 (CPython)

Using Python 2 and the CPython interpreter, you can use the gevent backend for goless with no problems. Under
Python 2, you can just do:

$ pip install gevent
$ pip install goless

9.3 Python 3 (CPython)

Newer versions of gevent include Python 3 compatibility. To install gevent on Python3, you also must install Cython.
So you can use thew following commands to install goless under Python3 with its gevent backend:

$ pip install cython
$ pip install git+https://github.com/surfly/gevent.git#gevent-egg
$ pip install goless

This works and is tested.

19

https://github.com/surfly/gevent

goless Documentation, Release 0.6.0

9.4 Stackless Python

All versions of Stackless Python (2 and 3) should work with goless. However, we cannot test with Stackless Python
on Travis, so we only test with it locally. If you find any problems, please report an issue.

20 Chapter 9. Compatibility Details

CHAPTER 10

goless and the GIL

goless does not address CPython’s Global Interpreter Lock (GIL) at all. goless does not magically provide any
parallelization. It provides Go-like semantics, but not its performance. Perhaps this will change in the future if the
GIL is removed. Another option is PyPy’s STM branch, which goless will (probably) benefit heartily.

21

goless Documentation, Release 0.6.0

22 Chapter 10. goless and the GIL

CHAPTER 11

References

• goless on GitHub: https://github.com/rgalanakis/goless

• goless on Read the Docs: http://goless.readthedocs.org/

• goless on Travis-CI: https://travis-ci.org/rgalanakis/goless

• goless on Coveralls: https://coveralls.io/r/rgalanakis/goless

• The Go Programming Language: http://www.golang.org

• Stackless Python: http://www.stackless.com

• gevent: http://gevent.org/

• PyPy: http://pypy.org/

• Idiomatic Go Examples: http://gobyexample.com

23

https://github.com/rgalanakis/goless
http://goless.readthedocs.org/
https://travis-ci.org/rgalanakis/goless
https://coveralls.io/r/rgalanakis/goless
http://www.golang.org
http://www.stackless.com
http://gevent.org/
http://pypy.org/
http://gobyexample.com

goless Documentation, Release 0.6.0

24 Chapter 11. References

CHAPTER 12

Contributing

I am definitely not a Go expert, so improvements to make things more idiomatic are very welcome. Please create an
issue or pull request on GitHub: https://github.com/rgalanakis/goless

goless was created by a number of people at the PyCon 2014 sprints. Even a small library like goless is the
product of lots of collaboration.

Maintainers:

• Rob Galanakis <rob.galanakis@gmail.com>

• Simon König <simjoko@gmail.com>

• Carlos Knippschild <carlos.chuim@gmail.com>

Special thanks:

• Kristján Valur Jónsson <sweskman@gmail.com>

• Andrew Francis <af.stackless@gmail.com>

25

https://github.com/rgalanakis/goless
mailto:rob.galanakis@gmail.com
mailto:simjoko@gmail.com
mailto:carlos.chuim@gmail.com
mailto:sweskman@gmail.com
mailto:af.stackless@gmail.com

goless Documentation, Release 0.6.0

26 Chapter 12. Contributing

CHAPTER 13

Miscellany

Coverage is wrong. It should be higher. The coverage module does not work properly with gevent and stackless.

27

goless Documentation, Release 0.6.0

28 Chapter 13. Miscellany

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

29

	Intro
	Goroutines
	Channels
	The select function
	Exception Handling
	Examples
	Benchmarks
	Backends
	Compatibility Details
	PyPy
	Python 2 (CPython)
	Python 3 (CPython)
	Stackless Python

	goless and the GIL
	References
	Contributing
	Miscellany
	Indices and tables

